Vistas de página en total
sábado, 29 de septiembre de 2012
HISTORIA DE LAS MATEMÁTICAS MODERNAS
Una época importante en la historia de las matemáticas esta comprendida en la época del renacimiento. En este momento de la historia es cuando aparece el cercano oriente como conocedor de las matemáticas. Aunque la historia de las matemáticas en el cercano oriente, no es tan antigua como en el lejano oriente, su aporte es de gran magnitud, especialmente con la aparición de gran cantidad de obras escritas por los grandes matemáticos de la época.Las matemáticas entraron en el siglo XIX, en donde se postularon los fundamentos de las matemáticas modernas.
Avances en la resolución de ecuaciones y en lo que hoy se conoce como calculo, hicieron de esta época la de mayor riqueza para esta ciencia.
Entre los grandes desarrollos de esta época se puede mencionar, la resolución de ecuaciones algebraicas radicales, el desarrollo del concepto de grupo, avances en los fundamentos de la geometría hiperbólica no euclidiana, a demás de la realización una muy profunda reconstrucción sobre la base de la creada teoría de límites y la teoría del número real.
Se crearon varias ramas de las matemáticas en ecuaciones diferenciales, la teoría de funciones de variable real y la teoría de funciones de variable compleja.
En el ámbito de la teoria de los conjuntos, se compuso una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie.
En relación con el análisis matemático en este siglo, se fundamento en un conjunto de procedimientos y métodos de solución de numerosos problemas que crecía rápidamente. Todos estos métodos aun podían dividirse en tres grandes grupos, constituidos en el cálculo diferencial, el cálculo integral y la teoría de ecuaciones diferenciales. Con estos fundamentos se llegó a lo que se conoce como teoría de límites y de funciones, que fueron el tema central en este siglo.
Otro de los grandes avances obtenidos en esta época, fue la introducción de la variable compleja, con ella se pudieron resolver los cálculos de integrales, lo que ejerció una grandísima influencia sobre el desarrollo de la teoría de funciones de variable compleja. Matemáticos como Laplace acudieron a la interpretación en variable compleja, con lo que fue desarrollando el método de resolución de ecuaciones lineales diferenciales.
Alrededor del año 1636 Apolonio comienza sus estudios en geometría analítica, descubriendo el principio fundamental de la geometría analítica: "siempre que en una ecuación final aparezcan dos incógnitas, tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva".
Con esto después formulo e identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 como la hipérbola, parábola, circunferencia y elipse respectivamente.
En el transcurso de este siglo los problemas diferenciales, aun se resolvían por los métodos más diversos.
Se contaba con: el álgebra; las técnicas de cálculo; introducción a las matemáticas variables; el método de coordenadas; ideas infinitesimales clásicas, especialmente de Arquímedes; problemas de cuadraturas; búsqueda de tangentes... Las causas que motivaron este proceso fueron, en primer término, las exigencias de la mecánica, la astronomía y la física. En la resolución de problemas de este género y en la creación del análisis infinitesimal tomaron parte muchos científicos: Kepler, Galileo, Cavalieri, Torricelli, Pascal, Walis, Roberval, Fermat, Descartes, Barrow, Newton, Leibniz, y Euler.
El concepto de Calculo y sus ramificaciones se introdujo en el siglo XVIII, con el desarrollo del análisis matemático, creando ramas como el calculo diferencial, integral y de variaciones.
Este es el desarrollo las matemáticas han obtenido desde que el hombre vió la necesidad de contar, hasta nuestros días. Actualmente gran cantidad de matemáticos siguen en el desarrollo de las matemáticas denominadas matemáticas modernas, de donde sus conceptos son la base de la mayor parte de las ciencias actuales.
Suscribirse a:
Enviar comentarios (Atom)
Es un tema muy interesante para los aficionados a las matemáticas.
ResponderEliminar